Perform Meta-analysis of Harmonized Data on Polly

Identify molecular signatures from meticulously curated and high-quality omics data on Polly.

Meta-analyzing Published Data
Is Not Trivial

Meta-analyzing diverse public studies is key to identifying and validating molecular signatures. However, this is not a trivial process. Public biomedical databases are notoriously fragmented and use varying formats, syntaxes, schemas and entity notations.  In this scenario, mining, integrating and harmonizing data becomes a bottleneck.

How Polly Helps?

Highest Quality Data to Arrive at Validated Results

Polly enhances all data by incorporating critical metadata, ensuring uniform processing and harmonization with controlled vocabulary.

Process results across multiple platforms (Microarray, Bulk RNA-seq, and scRNAseq), overcome batch effects and make all data comparable.

Address custom metadata, and cohorting needs with Polly’s scalable harmonization.

Discover the Data You Need

Experience 360-degree findability for uncovering novel therapeutic targets. Save ~2X the time spent auditing public sources for accurate data.

Scan public or in-house data sources to arrive at a pool of datasets most relevant to your question.

Search across genes, pathways, indications, etc., using free-text search and contextual filters on a performant GUI.

Generate richer queries using an ontology-based recommendation engine. For example, search results for lung cancer won't just yield keyword matches but also insights into different subtypes.

Unleash the Power of Curated Data

Start analyzing with Polly’s Meta-analysis application.

Pick the right cohorts from your selected pool of datasets using a drag-and-drop cohort builder.

Generate interactive heatmaps, volcano plots, or scatter plots to explore gene expression levels of specific genes across multiple cohorts' biological conditions.

Get a list of meta-analyzed genes or pathways with a built-in random-effect model.

The Polly Difference

Accelerate Critical Milestones

Reduce 80% of your spent in scouring public databases to derive up/ downregulated genes or pathways across indications.

Improve Your Hypotheses Success Rate

Swiftly detect potential pitfalls associated with identified targets from the outset even before conducting validation experiments.

Overcome Limitations
and Bias

Dissect study result variations, identify sources of heterogeneity, and prevent bias risks that come from ‘mixing apples and oranges data’ with Polly.

request demo
Blog

GEO Datasets for Transcriptomics Meta-analysis
in Research

View Blog

FAQs

What is Elucidata's approach to harmonizing public omics data using Polly?

Lorem ipsum dolor sit amet consectetur. Dictumst faucibus nibh imperdiet phasellus vitae ut sit. Ut eros amet massa tellus orci. Vestibulum ac arcu est nulla non eget nulla. Eget pulvinar eu ac mi cursus elementum neque. Massa nisl fringilla platea diam faucibus nullam. In lacus mauris nec ultrices. Ut accumsan leo adipiscing montes proin.

Elucidata’s Polly harmonizes public omics data by integrating datasets from various sources, standardizing metadata, and applying machine-learning-driven quality checks. Polly ensures that raw, unstructured data is transformed into analysis-ready, high-quality datasets, enabling researchers to derive meaningful biological insights.

How does Elucidata ensure data quality and consistency across different platforms (e.g., Microarray, Bulk RNA-seq, scRNA-seq) with Polly?

Lorem ipsum dolor sit amet consectetur. Dictumst faucibus nibh imperdiet phasellus vitae ut sit. Ut eros amet massa tellus orci. Vestibulum ac arcu est nulla non eget nulla. Eget pulvinar eu ac mi cursus elementum neque. Massa nisl fringilla platea diam faucibus nullam. In lacus mauris nec ultrices. Ut accumsan leo adipiscing montes proin.

Polly applies automated pipelines that:

  1. Normalize data across platforms to ensure comparability.
  2. Use robust batch correction techniques to reduce technical variability.
  3. Align data with standardized ontologies and annotations for cross-study and cross-platform consistency.
  4. Implement quality control filters to remove low-confidence data points.

How does Elucidata's Polly handle custom metadata and cohorting needs?

Lorem ipsum dolor sit amet consectetur. Dictumst faucibus nibh imperdiet phasellus vitae ut sit. Ut eros amet massa tellus orci. Vestibulum ac arcu est nulla non eget nulla. Eget pulvinar eu ac mi cursus elementum neque. Massa nisl fringilla platea diam faucibus nullam. In lacus mauris nec ultrices. Ut accumsan leo adipiscing montes proin.

Polly allows users to define and structure custom metadata fields based on research objectives. Researchers can:

  1. Filter Datasets: Easily subset data by patient demographics, disease subtypes, or experimental conditions.
  2. Create Custom Cohorts: Group patients or samples into user-defined cohorts for comparative or targeted analyses.
  3. Enrich Metadata: Incorporate annotations from public or proprietary sources, adding depth and relevance to study datasets.

What are the main challenges in meta-analyzing public biomedical data, and how does Elucidata address them with Polly?

Lorem ipsum dolor sit amet consectetur. Dictumst faucibus nibh imperdiet phasellus vitae ut sit. Ut eros amet massa tellus orci. Vestibulum ac arcu est nulla non eget nulla. Eget pulvinar eu ac mi cursus elementum neque. Massa nisl fringilla platea diam faucibus nullam. In lacus mauris nec ultrices. Ut accumsan leo adipiscing montes proin.

Researchers commonly encounter data heterogeneity, missing metadata, batch effects, and standardization issues when performing meta-analyses on public biomedical data. Polly overcomes these by:

  1. Harmonizing data across studies using machine-learning algorithms.
  2. Cleaning and structuring metadata for accurate cohorting.
  3. Applying statistical corrections to remove batch effects.
  4. Facilitating multi-modal analysis for deeper biological insights.

How can Elucidata's Polly help in identifying molecular signatures from meticulously curated omics data?

Lorem ipsum dolor sit amet consectetur. Dictumst faucibus nibh imperdiet phasellus vitae ut sit. Ut eros amet massa tellus orci. Vestibulum ac arcu est nulla non eget nulla. Eget pulvinar eu ac mi cursus elementum neque. Massa nisl fringilla platea diam faucibus nullam. In lacus mauris nec ultrices. Ut accumsan leo adipiscing montes proin.

Polly streamlines signature discovery by:

  1. Providing pre-processed, harmonized multi-omics datasets.
  2. Supporting statistical and AI-driven approaches for feature selection.
  3. Enabling cross-cohort comparison to identify conserved biomarkers across conditions.

Can Elucidata's Polly handle different types of data formats, syntaxes, and schemas?

Lorem ipsum dolor sit amet consectetur. Dictumst faucibus nibh imperdiet phasellus vitae ut sit. Ut eros amet massa tellus orci. Vestibulum ac arcu est nulla non eget nulla. Eget pulvinar eu ac mi cursus elementum neque. Massa nisl fringilla platea diam faucibus nullam. In lacus mauris nec ultrices. Ut accumsan leo adipiscing montes proin.

Yes. Polly is designed to process a wide variety of data formats—such as FASTQ, TSV, CSV, and JSON—while accommodating different syntaxes and schemas. Its interoperability framework ensures seamless integration across diverse experimental outputs, enabling efficient downstream analysis.

How does Elucidata's Polly mitigate batch effects in omics data?

Lorem ipsum dolor sit amet consectetur. Dictumst faucibus nibh imperdiet phasellus vitae ut sit. Ut eros amet massa tellus orci. Vestibulum ac arcu est nulla non eget nulla. Eget pulvinar eu ac mi cursus elementum neque. Massa nisl fringilla platea diam faucibus nullam. In lacus mauris nec ultrices. Ut accumsan leo adipiscing montes proin.

Polly uses machine learning-based batch effect correction techniques, such as:

  1. ComBat and Harmony algorithms for data normalization.
  2. Statistical transformation to align distributions across datasets.
  3. Cross-validation methods to ensure biological signals remain intact after correction.

How can Elucidata's Polly improve the success rate of hypotheses related to omics data analysis?

Lorem ipsum dolor sit amet consectetur. Dictumst faucibus nibh imperdiet phasellus vitae ut sit. Ut eros amet massa tellus orci. Vestibulum ac arcu est nulla non eget nulla. Eget pulvinar eu ac mi cursus elementum neque. Massa nisl fringilla platea diam faucibus nullam. In lacus mauris nec ultrices. Ut accumsan leo adipiscing montes proin.

By providing curated, high-quality, and well-annotated omics datasets, Polly ensures that researchers:

  1. Base their hypotheses on reliable data rather than noisy public repositories.
  2. Use AI-driven insights to validate targets more efficiently.
  3. Leverage pre-harmonized data to reduce experimental variability.

How does Elucidata's Polly help in overcoming limitations and bias in public biomedical databases?

Lorem ipsum dolor sit amet consectetur. Dictumst faucibus nibh imperdiet phasellus vitae ut sit. Ut eros amet massa tellus orci. Vestibulum ac arcu est nulla non eget nulla. Eget pulvinar eu ac mi cursus elementum neque. Massa nisl fringilla platea diam faucibus nullam. In lacus mauris nec ultrices. Ut accumsan leo adipiscing montes proin.

Public databases often have incomplete metadata, inconsistent annotations, and inherent biases. Polly addresses these issues by standardizing metadata across studies, identifying and filtering out biased datasets, and ensuring cross-cohort comparability for more accurate conclusions.

How does Elucidata's Polly reduce the time spent on scouring public databases for relevant data?

Lorem ipsum dolor sit amet consectetur. Dictumst faucibus nibh imperdiet phasellus vitae ut sit. Ut eros amet massa tellus orci. Vestibulum ac arcu est nulla non eget nulla. Eget pulvinar eu ac mi cursus elementum neque. Massa nisl fringilla platea diam faucibus nullam. In lacus mauris nec ultrices. Ut accumsan leo adipiscing montes proin.

Polly eliminates the need for manual data retrieval by:

  1. Offering pre-curated datasets from multiple repositories.
  2. Providing advanced search and filtering options for quick dataset selection.
  3. Streamlining data preparation workflows, allowing researchers to focus on analysis.

What is the process for requesting a demo of Elucidata's Polly?

Lorem ipsum dolor sit amet consectetur. Dictumst faucibus nibh imperdiet phasellus vitae ut sit. Ut eros amet massa tellus orci. Vestibulum ac arcu est nulla non eget nulla. Eget pulvinar eu ac mi cursus elementum neque. Massa nisl fringilla platea diam faucibus nullam. In lacus mauris nec ultrices. Ut accumsan leo adipiscing montes proin.

To request a demo of Polly:

  1. Visit the Elucidata website and navigate to the Contact or Request Demo section.
  2. Fill out the form with your research interests and use case.
  3. Schedule a personalized demo with Elucidata’s experts to explore Polly’s capabilities.
Request Demo