Develop Robust Foundation Models for Life Sciences R&D

Create an AI-ready corpus of large-scale multimodal data, enriched with relevant metadata, to train deep learning models using our scalable harmonization engine.

Building a Robust Data Foundation for AI-Driven Drug Discovery

As large AI models gain traction in life sciences, the quality of biomedical data becomes a key differentiator between impactful and unreliable models. Public biomedical data is often scattered, inconsistently processed, and accompanied by variable-quality metadata, complicating the development of reliable biomedical models. Customized datasets are therefore crucial for effectively training, fine-tuning, and validating biomedical foundation models.

How We Help You?

We Deliver Data-centric AI Solutions

Custom curated biomedical datasets tailored to you research needs.

Create AI-ready biomedical datasets with consistently processed data and harmonized metadata from public or in-house sources using our best-in-class pipelines.

Our scalable pipelines support diverse data types, streamlining the curation of multimodal datasets for training foundational models.

Comprehensive and Standardized Metadata for Informed Data Selection

Accelerate downstream fine-tuning use cases for pre-trained biomedical foundation models.

Leverage our expertise in custom metadata curation to enrich your datasets with context and assess their representativeness before initiating training workflows.

Utilize comprehensive, standardized metadata for informed data selection, enhancing foundation model pre-training and optimizing downstream fine-tuning use cases.

Comprehensive Data Engineering and MLOps Solutions

Accelerate your transition from prototyping to production with our services.

Collaborate with us to build robust data stores, optimize and fine-tune models in the cloud, and effectively benchmark performance.

Integrate complex models into computational workflows, enabling you to start deriving value from your AI initiatives quickly.

The Elucidata Difference

Streamlined Model Development

Leverage our expertise in data-centric AI solutions within the biomedical space. We offer machine learning (ML) expertise in data preprocessing, selecting the best training strategies, and optimizing model architectures, enabling you to build high-quality models in a resource-efficient manner and within budget constraints.

Diverse Data Types for Specific Representation

Utilize our extensive experience in handling diverse data types to assemble domain-specific multimodal datasets tailored to meet all your model training needs.

Scalable Deployment and Integration

Benefit from our MLOps, cloud infrastructure, and engineering expertise to seamlessly deploy models in the cloud and build an ecosystem of workflows, applications, and APIs, ensuring easy access and effective utilization of models across your organization.

Trusted by World's Leading Biopharma Companies

FAQs

What is a foundation model in life sciences R&D?

Lorem ipsum dolor sit amet consectetur. Dictumst faucibus nibh imperdiet phasellus vitae ut sit. Ut eros amet massa tellus orci. Vestibulum ac arcu est nulla non eget nulla. Eget pulvinar eu ac mi cursus elementum neque. Massa nisl fringilla platea diam faucibus nullam. In lacus mauris nec ultrices. Ut accumsan leo adipiscing montes proin.

A foundation model in life sciences R&D is a large-scale AI model trained on diverse, multimodal biomedical data to extract meaningful biological insights.These models serve as a base for multiple downstream applications, including biomarker discovery, drug repurposing, and disease modeling. They enable researchers to leverage vast amounts of structured and unstructured biomedical data for more accurate and scalable AI-driven discoveries.

How can AI-driven drug discovery benefit from high-quality biomedical data?

Lorem ipsum dolor sit amet consectetur. Dictumst faucibus nibh imperdiet phasellus vitae ut sit. Ut eros amet massa tellus orci. Vestibulum ac arcu est nulla non eget nulla. Eget pulvinar eu ac mi cursus elementum neque. Massa nisl fringilla platea diam faucibus nullam. In lacus mauris nec ultrices. Ut accumsan leo adipiscing montes proin.

High-quality biomedical data is essential for AI-driven drug discovery as it enhances model accuracy, reduces bias, and improves generalizability. Curated, AI-ready datasets ensure that foundation models can learn meaningful biological patterns, leading to more reliable predictions for target identification, patient stratification, and drug efficacy assessments. Without well-structured, harmonized data, AI models risk producing inconsistent or misleading results.

What are the challenges in curating AI-ready biomedical datasets?

Lorem ipsum dolor sit amet consectetur. Dictumst faucibus nibh imperdiet phasellus vitae ut sit. Ut eros amet massa tellus orci. Vestibulum ac arcu est nulla non eget nulla. Eget pulvinar eu ac mi cursus elementum neque. Massa nisl fringilla platea diam faucibus nullam. In lacus mauris nec ultrices. Ut accumsan leo adipiscing montes proin.

Curating AI-ready biomedical datasets is complex due to:

In what formats are bulk RNA-seq datasets on Polly provided, and are they compatible with common bioinformatics tools and pipelines?

Lorem ipsum dolor sit amet consectetur. Dictumst faucibus nibh imperdiet phasellus vitae ut sit. Ut eros amet massa tellus orci. Vestibulum ac arcu est nulla non eget nulla. Eget pulvinar eu ac mi cursus elementum neque. Massa nisl fringilla platea diam faucibus nullam. In lacus mauris nec ultrices. Ut accumsan leo adipiscing montes proin.

Bulk RNA-seq datasets are stored in the GCT format on Polly. Additionally, our team can also support custom requests for providing data in the file formats that are best suited for the downstream bioinformatics tools and pipelines used by our clients.

  1. Data Heterogeneity – Biomedical data comes from multiple sources (omics, clinical, imaging, etc.) with varied formats and standards.
  2. Lack of Standardization – Inconsistent metadata and missing annotations hinder model training.
  3. Scalability Issues – Processing large, multimodal datasets requires significant computational power and automation.
  4. Data Quality Variability – Noisy, unstructured, or incomplete datasets reduce AI model performance.
    Elucidata’s technology addresses these challenges by harmonizing, standardizing, and enriching data to ensure AI-readiness.

How does metadata curation improve the accuracy of AI models in life sciences?

Lorem ipsum dolor sit amet consectetur. Dictumst faucibus nibh imperdiet phasellus vitae ut sit. Ut eros amet massa tellus orci. Vestibulum ac arcu est nulla non eget nulla. Eget pulvinar eu ac mi cursus elementum neque. Massa nisl fringilla platea diam faucibus nullam. In lacus mauris nec ultrices. Ut accumsan leo adipiscing montes proin.

Metadata curation ensures that datasets contain well-structured, consistent, and biologically relevant annotations. This process reduces noise, improves interpretability, and enhances AI models’ ability to generalize across different datasets. High-quality metadata enables models to detect meaningful patterns in biological systems, ultimately improving predictions in drug discovery, diagnostics, and personalized medicine.

How does Elucidata create AI-ready multimodal datasets?

Lorem ipsum dolor sit amet consectetur. Dictumst faucibus nibh imperdiet phasellus vitae ut sit. Ut eros amet massa tellus orci. Vestibulum ac arcu est nulla non eget nulla. Eget pulvinar eu ac mi cursus elementum neque. Massa nisl fringilla platea diam faucibus nullam. In lacus mauris nec ultrices. Ut accumsan leo adipiscing montes proin.

Elucidata transforms raw biomedical data into AI-ready datasets by:

  1. Integrating Multimodal Data – Combining omics, imaging, clinical, and literature-based datasets.
  2. Data Harmonization – Standardizing formats, annotations, and metadata across sources.
  3. Quality Control & Enrichment – Filtering noisy data, filling missing values, and enhancing biological context.
  4. Scalable Processing – Leveraging automation and cloud computing to handle large datasets efficiently.

These steps ensure that foundation models train on clean, high-quality biomedical data.

What makes Elucidata’s data harmonization engine unique?

Lorem ipsum dolor sit amet consectetur. Dictumst faucibus nibh imperdiet phasellus vitae ut sit. Ut eros amet massa tellus orci. Vestibulum ac arcu est nulla non eget nulla. Eget pulvinar eu ac mi cursus elementum neque. Massa nisl fringilla platea diam faucibus nullam. In lacus mauris nec ultrices. Ut accumsan leo adipiscing montes proin.

Elucidata’s data harmonization engine is purpose-built for life sciences, leveraging:

  • AI-driven Standardization – Automatically aligning diverse datasets to a common schema.
  • Context-aware Metadata Curation – Enhancing biological relevance with automated metadata enrichment.
  • Scalability – Processing millions of biomedical data points efficiently.
  • Continuous Learning – Adapting to new data modalities and evolving research needs.

This ensures seamless AI model training and robust downstream analysis.

How does Elucidata support scalable deployment of AI models?

Lorem ipsum dolor sit amet consectetur. Dictumst faucibus nibh imperdiet phasellus vitae ut sit. Ut eros amet massa tellus orci. Vestibulum ac arcu est nulla non eget nulla. Eget pulvinar eu ac mi cursus elementum neque. Massa nisl fringilla platea diam faucibus nullam. In lacus mauris nec ultrices. Ut accumsan leo adipiscing montes proin.

Elucidata enables scalable AI model deployment by providing:

  • Cloud-native Infrastructure – AI-ready data processing on AWS, Azure, and Google Cloud.
  • MLOps Integration – Automating model training, validation, and deployment pipelines.
  • Interoperability – Seamless compatibility with existing AI frameworks and research workflows.

This approach ensures efficient, reproducible, and production-grade AI applications in life sciences.

What types of biomedical data does Elucidata process?

Lorem ipsum dolor sit amet consectetur. Dictumst faucibus nibh imperdiet phasellus vitae ut sit. Ut eros amet massa tellus orci. Vestibulum ac arcu est nulla non eget nulla. Eget pulvinar eu ac mi cursus elementum neque. Massa nisl fringilla platea diam faucibus nullam. In lacus mauris nec ultrices. Ut accumsan leo adipiscing montes proin.

Elucidata processes diverse biomedical data types, including:

  • Genomics & Transcriptomics (RNA-Seq, WGS, single-cell)
  • Proteomics & Metabolomics
  • Pathology & Histopathology Images
  • Clinical & EHR Data
  • Biomedical Literature & Knowledge Graphs
  • Multi-omics Data

By integrating these datasets, Elucidata enables AI models to derive holistic biological insights.

What are the key steps in training AI foundation models for biomedical research?

Lorem ipsum dolor sit amet consectetur. Dictumst faucibus nibh imperdiet phasellus vitae ut sit. Ut eros amet massa tellus orci. Vestibulum ac arcu est nulla non eget nulla. Eget pulvinar eu ac mi cursus elementum neque. Massa nisl fringilla platea diam faucibus nullam. In lacus mauris nec ultrices. Ut accumsan leo adipiscing montes proin.

  1. Data Curation & Preprocessing – Standardizing, annotating, and filtering raw data.
  2. Feature Engineering – Extracting relevant biological signals for model training.
  3. Model Training – Fine-tuning large AI models on multimodal datasets.
  4. Validation & Benchmarking – Ensuring model performance on real-world biomedical tasks.
  5. Deployment & Continuous Learning – Deploying models in production and updating with new data.

Elucidata’s AI-ready datasets optimize each stage of this pipeline.

How does Elucidata handle data preprocessing and metadata standardization?

Lorem ipsum dolor sit amet consectetur. Dictumst faucibus nibh imperdiet phasellus vitae ut sit. Ut eros amet massa tellus orci. Vestibulum ac arcu est nulla non eget nulla. Eget pulvinar eu ac mi cursus elementum neque. Massa nisl fringilla platea diam faucibus nullam. In lacus mauris nec ultrices. Ut accumsan leo adipiscing montes proin.

Elucidata uses an automated pipeline to remove inconsistencies, handle missing values, and normalize data formats. It then standardizes metadata by mapping it to controlled vocabularies and ontologies, followed by rigorous quality control steps to ensure AI-readiness. These measures improve model robustness and enable seamless integration into research workflows.

Can Elucidata integrate AI models into existing cloud infrastructure?

Lorem ipsum dolor sit amet consectetur. Dictumst faucibus nibh imperdiet phasellus vitae ut sit. Ut eros amet massa tellus orci. Vestibulum ac arcu est nulla non eget nulla. Eget pulvinar eu ac mi cursus elementum neque. Massa nisl fringilla platea diam faucibus nullam. In lacus mauris nec ultrices. Ut accumsan leo adipiscing montes proin.

Yes, Elucidata’s AI-ready data solutions are designed for seamless integration into existing cloud-based AI workflows. Elucidata supports:

  • AWS, Azure, and Google Cloud Compatibility
  • Containerized Deployments (Docker, Kubernetes)
  • API-Driven Data Access for real-time AI model training

This ensures smooth deployment of AI models across various computational environments.

What are the benefits of using MLOps for AI model deployment in life sciences?

Lorem ipsum dolor sit amet consectetur. Dictumst faucibus nibh imperdiet phasellus vitae ut sit. Ut eros amet massa tellus orci. Vestibulum ac arcu est nulla non eget nulla. Eget pulvinar eu ac mi cursus elementum neque. Massa nisl fringilla platea diam faucibus nullam. In lacus mauris nec ultrices. Ut accumsan leo adipiscing montes proin.

MLOps (Machine Learning Operations) enhances AI model deployment by:

  • Automating Workflows – Streamlining data ingestion, model training, and validation.
  • Ensuring Reproducibility – Standardizing AI model development for consistent results.
  • Optimizing Resource Allocation – Managing computational costs for large-scale AI models.
  • Monitoring & Updating Models – Enabling continuous learning with new biomedical data.

Elucidata integrates MLOps best practices to enable scalable, production-ready AI models in life sciences.